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Symmetries of the Doi kinetic theory for nematic polymers of arbitrary aspect ratio:
At rest and in linear flows
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The Doi theory has successfully modeled the monodomain shear flow problem for rigid, rodlike nematic
polymers. Numerical simulations of the Smoluchowski equation for the orientational probability distribution
function (PDPF predict monodomain attractors in regions of nematic concentratiand shear ratg. Theo-
retical work has focused on approximate constructions of PDF solutions in linear flow regimes. Here we
develop a collection of simple observations, expressed by symmetries of the Smoluchowski equation, which
imply global properties that all PDF solutions must obey. The well-known orientational degeneracy of quies-
cent nematics is a continuoug3) symmetry. In simple shear, a discrete reflection symmetry survives that is
evident in recent numerical simulations and implies bistability of out-of-plane attractors; and rodlike and
discotic nematic liquids of reciprocal aspect ratio respond identically up to a fixed rotation of the PDF. Finally,
we show the orientational effects due to varying molecular aspect ratio in any linear flow are equivalent to
varying the straining component of the flow field.
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[. INTRODUCTION parameters included in the extended Doi kinetic theory such
as molecular aspect ratiof. Ref.[19]).

Numerical simulations, largely based on spherical har- Renewed interest in monodomain dynamics of rigid mac-
monic expansiorf1—10], have been instrumental in estab- romolecular fluids is compelled by recent detailed kinetic
lishing agreement between experimental phenomena of nerf€ory simulations of Faraoei al.[7] and Grosset al.[8].
atic polymers and the Doi kinetic theofy1-18 for flowing ~ These studies reveal strikirignetic theory phenomenas
polymeric liquid crystals. Most notably, monodomain attract-Well as clarify previously reported results, in the mon-

ing states and their transitions versus shear rate have be@fomain response of rigid thin rods to simple sheay:A

correlated with rheological features of sign changes in rmr_discrete number of stable and unstable solution branches for
ach fixed shear rat€2) various bifurcations among these

mal stress differences and structural changes in apparent viE

cosity and shear stress. These correlations with experime n{a ?ﬂﬁgel‘:‘] a:nv?/:?]ggv?/ c?f ﬁg?gé%?;glgﬁegurt:tég fgrrlzoggr?gv_v
rely first and foremost on accurate simulation of the Smolu-

chowski equation for the molecular orientational probabilityrange of nematic concentration; af@j a reflection symme-
distribution function, and then on the identification of thosetry of out-of-plane stategboth steady and periogiavhich

solutions with monodomain steady or transient states. Fo{ﬁz,? asbll eag;?er;gtjat(i)ctzzlr rg;%%igfs’ to parameter regimes of

example, the logrolling and kayaking solutions, whose major From the theory of dynamical systems, one knows that

director, respectively, aligns with or oscillates around the : . .
vorticity axis in simple shear, were first exhibited with ki- global featuresi.e., properties of the entire phase space of

. ) ' ) . solutions, are often associated with symmetries. In 2]
netic theory simulations n the ea_1r|y 199[&4]' Attracting the authors developed a collection of symmetries shared by
out-of-plane states that either align or oscillatectly be-

tweenthe vorticity axis and shearing plane have onl re_several mesoscopic tensor models, i.e., properties those were
Herty gp y apparently robust to closure approximation. These observa-
cently been discovergd, 8.

The final step in relating theory to experiment, once thetlons are generalized now to the kinetic theory.
phase diagram of attracting states is established, is to evalu-

ate constitu_tive laws for rheological prope_rties along each Il. THE EXTENDED DOI KINETIC THEORY
stable solution branchlhe brunt of the difficulty therefore
lies in the accurate computatioof the full flow-phase dia- We first recall the kinetic theory for homogeneous nem-

gram of all individual monodomain attractors, their classifi- atic liquids relevant for our purposg$9]. Let f(m,t) be the
cation as steady or unsteady, stable or unstable, the multipligrobability distribution functiofPDF corresponding to the

ity (continuous or discrejeof solution branches, and their probability that the axis of revolution of the molecule is par-
transitions (i.e., bifurcationy that may occur by varying allel to directionm (||m||=1) at timet, where the Icp mol-
shear rate, or strength of the nematic poteritisbially mod-  ecule is modeled as an axisymmetric ellipsoid of aspect ratio
eled as a concentration paramgtesr other recent model r (length of the molecule symmetry axis divided by the ra-
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dius of the transverse circular cross seckidrhe fluid veloc- IIl. A COLLECTION OF OBSERVATIONS
ity is denoted bw. The Smoluchowskikinetic) equation for

f(m.t) is given by(e.g..[12,21.19) A. Orientational degeneracy in hydrodynamic equilibrium

Without flow, the kinetic equatiofl) reduces to

—R-[mxmf],
(2)

AR f+ LRy Jf
2~ Dr@R || Ri+ 7 TRVys —=D,(aR-

ot ' ®

kT

1
(Rf + —vaMS)

) Let Ue O(3) denotes any orthogonal transformation acting
where 9/ox=V and R=mXd/om are the spatial and the on the configuration spacghe sphereS?) of m (see Ref.

rotational gradient operator, respectively, [23]). We now state the basic fact that is inherent in the
seminal works of Onsagép4], Landau[25], de Gennes and
m=Q-m+a[D-m—D:mmm)] (2 Prost[26], Hess[27], and Doi[11].

Orientational degeneracy of quiescent nematic liquids

is the Jeffery orbit of axisymmetric ellipsoidal molecules Every anisotropic solution of Ed8) generates a continuous
[22], D and Q are the rate of strain and vorticity tensors, family of solutions parametrized by the groupg3D of or-

respectively, defined by thogonal transformations. That is, every anisotropic solution
f(m,t) of Eq. (8), for arbitrary initial dataf(m,t=0)
D=L{(Vv+WVT), Q=1(Vv-WV)) 3) #1/47r, generates an entire (8 group of solutions,

f(U-m,t), where Ue O(3). The isotropic equilibrium f

_ . =1/4 is isolated, i.e., a fixed point of the symmetry.
1=a=1 is the molecular shape parameter related to the We give a proof to illustrate the generality of potentials

aspect ratiar by for which it holds. First, rewrite Eq(8) into the form

A r’—1 @ af 1
_r2+1- E—Dr(a)R Rf"’ ﬁfRVMS
The coefficienD, is an averaged rotary diffusivity, taken to =D,(a) . —f+ if iVMS _ (9)
be constant to make contact wifY,8]; an orientation- am [dm kT dm

dependent rotary diffusivity will not change the symmetry ) i )
properties developed below, but will affect the phase dia<Consider a general class of intermolecular potenials
gram in the simple flows discussed heréelnis the Boltz-

mann constantl is the absolute temperature, avigls is the V(m,f(-,t)= h(m,m’)f(m’,t)dm’,  (10)
Maier-Saupe intermolecular potential with strength propor- [m’[=1

tional to thedimensionless polymer concentration N . . .
poly whereh(m,m’) is a geometric expression for the excluded

3NKT volume that muston physical groundssatisfy a basic dual-

Vis= — 5 (mm):mm. (5) ity relation,
h(m,UT-m’)=h(U-m,m’). (11
Here This class of potentials, and the symmetry property, includes
Maier-Saupe and Onsager potentials as special cases,
)= O f(m,t)dm. 6 ,
<( )> HmH:l( ) ( ) ( ) hMS:_%NkT(mm )2,

The average, or mesoscopic, molecular orientation is tradi- ho=BNKT|m>xm’[, (12

tionally defined in terms of the second moment,d¥l, or its

traceless equivaler®, the mesoscopic orientation tensor whereN is a strength parameter associated with a dimension-

less molecular concentration, aylis a parameter propor-
tional to the volume of the molecule. The symmeti)
M=(mm), Q=M- '_ @) states that the excluded-volume potential cannot give the dif-
3 ference if one rotatem relative tom’ or vice versa. This
property applies to any aspect-ratio molecular fluid for which
These equations, coupled with momentum, mass, and e distinguished molecule axis is specified.
ergy balance equations, constitute the extended Doi theory For any orthogonal transformatids, an explicit calcula-
for finite-aspect-ratio nematic fluids. Fisothermal, linear ~ tion shows that
flow fields these conservation laws are satisfied identically,
and the full system “simplifies” to the homogeneous kinetic if(u- m,t)=UT. if(n,t), (13)
equation(l). om an
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where This rotational symmetry is the fundamental mechanism that
Onsagef 24], Landau 25] and de Gennes and Pr¢&6] use
n=uU-m. (14 to deduce that the-N transition has to be of first ordg26).
We emphasize these symmetries gaveriori control of
the “most probable directions” of orientation of the quies-
P 9 4 cent nematic equilibriaf ™ (stablg, f~ (unstablg. The peak
— - —f(U-mt)=—- - —f(n,t). (15 direction of f ™~ coincides with the “major director” de-
Jm om on on fined in terms of the second-momeQttensor projection of
f. That is, if two PDFf,, are related by the symmetry
fi(m)=f,(U-m), then their second-moment projections
Qs> automatically satisiQ, = UT-Q,- U, which reproduces
the mesoscopic form of the symmetf20]. In numerical
vim,fy(-,t)=|  h(mm)f(U-m’ t)dm’ simulations at nematic concentrations pastlthetransition,
=1 a random initial distributionf(m,t=0) will converge nu-
merically to one element of the(B) degenerate solutiofi*,
from which one can deduce the Euler angles of the “major
director.” But the inverse problem, where one prescribes the
Euler angles of the asymptotic equilibrium distribution, i.e.,
where one prescribes the specific elemgrtO(3), isonly
solved with symmetries.

The construction proceeds as follows. We first borrow a
result from the following section, Eq32), which character-
izes “in-plane orientation” at the kinetic equation level of
g 0 g 0 the PDFf, and which preserves the “in-plane” definition
m %V(m,fu(~,t))= " %V(n,f(~,t)), based on th&-tensor projection of. This symmetry allows

us to initialize randonin-plane, biaxial initial distributions
J J fip(m,0); by the group symmetry, every such orbit is guar-
—f(U-m’,t)- a_mV(U' m,fu(-,t)) anteed to remain in-plane, and therefore all such anisotropic

It then follows that

With fy(m,t)=f(U-m,t), the intermolecular potential has
the property

=j h(m,UT-n")f(n’,t)dn’
[n=1

=f h(U-m,n")f(n’,t)dn’
[n"ll=1

=V(n,f(-,1)). (16)

It follows that

Jam initial data are in the stable manifold of an in-plane nematic
P P equilibrium fig(m). (Prior to flow, there are infinitely many
=—f(n,t)- —=V(n,f(-,1)). (170  invariant planes, but we select tikey plane to be consistent
an an with subsequent developments in planar shear, where this is
Combining Eqs(15), (16), and(17), we have the unique invariant planeWe first choose biaxial initial

data for Fig. 1 whose major director aligns with thexis,
P 1 and therefore the distribution converges to the unique
Efu(m,t)zDr(a)R-[RfUJr k—_I_fURV(m,fU(-,t))} uniaxial in-plane distribution peaked along theaxis. We
emphasize the PDF must remain peaked along tieds for
all time, by the symmetryFigure 1 plots the projection of
V(m,fy(- ,t))}, this orbit onto the order parameters of Qetensor(equiva-
lently M); the directors are not shown, since they are passive
(18 during the evolution. Next we rotate the initial data out-of-
plane, fq(m,0)=f;,(U-m,0) with the specific choice

Dy (@) e |y ey
=Dr@) g o fu T fuzm

or equivalently,

af -D Jd Jd ¢ 1 ‘ Jd Vin.f ﬁ é ﬁ
p (n,t)= r(a)%' Tt (n,f(-,t)) 3 3 3
Vo RRY))
1 u=[ o — —-—1. (20)
=D (8) Ry | Raf + (= FRV(L(-1) . 2 2
26 6 6
19 "6 6 6

where R,=nXdldn. Thus, if f(m,t) satisfies Eq(8), so
doesf(m,t). The numerical integration of this data, by the symmetry, has
The set of equilibrium solutions of E¢B) versus nematic 0 agree at all times with thie transformation of the in-plane
concentrationN comprises the isotropic-to-nematic phasePDF solution. Therefore, the orbit is guaranteegriori to
transition diagram; refer to Ref$7,28,a_ The two aniso- converge to the distributioh*(Um). This is confirmed nu-
tropic solution branchest " (m), f~(m), which exist for ~merically, and offers a good benchmark on the code and
sufficiently largeN, each correspond to a continuoug3p  Visualization routines. Sincé,, and f;, haveQ tensor pro-
group of equilibria, f*(U-m), f~(U-m), for UeO(3). jections related b@op(t)ZUTQip(t)-U for all time, we are
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FIG. 1. Orientational symmetry of orbits in the stable manifold of the nematic equilibriunfrix the strengtiN=>5 of the Maier-Saupe
potential which is above thieN transition. Two orbits; J(m,t) of the Smoluchowski equation without flo(@) are numerically computed;
the initial dataf ;(m,0) isin-plane defined by Eq(32) for the x-y plane, whereaé,(m,0)= f;(U-m,0) is anout-of-plane rotatiorof f, for
U given in Eq.(20). These orbits converge to equilibrium distributions, and orientational symmetry infpliest) =f,(U-m,t) for all
time, which we do not enforce but rather confirm by numerical integration. Each orbit is projected onto the second-momevit, i€tisor
which according to orientational symmetry must be related by a similarity transformatids, Bg. (20), M,(t)=UT-M4(t)- U. Since
eigenvalues are invariant under orthogonal similarity transformations, we can illustrate the symmetry by showing that the eigenvalues of
each second-moment are identical during the entire evolution. The eigenvalues are oredieddl=d;>=0. Indeed, the curves lie on top
of one another, and converge to theiaxial distributions withd,=d;. Any otherUe O(3) results in the same curve, illustratingd3D
degeneracy of every orbit of E¢8), and likewise the nematic equilibriufi".

guaranteed by the @) symmetry of Eq.8) that the eigen- 2 | 8
vectors are initially transformed by and do not vary in Qyy=~3Vga20 \ g Reaz2, (24)
time, whereas the eigenvaluégsder parametejof eachQ

tensor evolve identically for all timéFig. 1).
We now recall essential ingredients of Galerkin expan- _ 8
Qxy_ - 1_5 |m(az,2)a

sions for the Smoluchowski equation and the projection for- (25
mula for the second-moment tensor. The spherical harmonic
expansion foif [2,4,7,§ is .

L | Qux=— \V 15 Rqaz,l)v (26)

f(mo~2, 2 anOY'(6,9), (21)
187
where Y[" are complex spherical harmonic basis functions Qyz= Elm(az‘vl)' (27)
[29],
Y= P{”(cosa)e‘m¢, 22) where, Re() and Im() represent the real and the imaginary

part, respectively.

The amplitudesy ,(t) of f are equivalent to the moments
of the distributionf ; one way to recover a continuo(sith-
out flow) or discretg(with flow) symmetry from the moment
equations is through a transformation on the space of solu-
tions which maps orbits of the dynamical systemy(t)
onto new orbits. All discrete flow symmetries are described
below in this way.

whereP[" are Legendre polynomial®, ¢ are spherical co-
ordinates withé being the polar angle ang being the lati-
tude angle, andl is the order of truncation in the Galerkin
approximation.

In the Appendix, we give an explicit forn48) of the
dynamical system for the amplitudes ,(t) which results
from the above expansion fdrin the Smoluchowski equa-
tion with and without an imposed linear flow field. These
equations are not new; this form is used to prove the flow- B. Mirror symmetry of all out-of-plane responses
nematic kinetic symmetries. to simple shear

The three amplitudes, g,a, 1,8, uniquely specify the

In this section we specialize the linear velocity field in Eq.
second-moment tens@y,

(1) to simple shear with arbitrary shear raterepresented in

, \/; o standard Cartesian coordinates,
Qu=-3 Vg0t VgRaas, (23 v=(y.0,0). (28
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In Ref. [20], we prove that the preclosure form of the
mesoscopic Doi theory admits a reflection symmetry: any
orbit Q(t) of the mesoscopic theory generates another orbit
symmetric about the shearing plane. A constructive algo-
rithm is given: retain the same values of in-plane compo-
nents,Qyx,Qxy,Qyy,Qz2, and reverse the sign of both out-
of-plane componentsQ,,,Qy,. Any out-of-plane solution
will generate a solution that is distinct pointwise in time; if
the entire orbit is not symmetric with respect to the vorticity
axis, then the solutions are distinct. Logrolling and classical
kayaking orbits that rotate around the vorticity axis are _ ) - )
mapped to themselves, and therefore are unique. This dis; ~'C: 2- Reflection-symmetric, out-of-plane, periodic solutions
crete reflection symmetry is compactly represented in termgf the shear-driven Smoluchowski equatidn for infinite-aspect-

of a similarity transformation of the mesoscopic ten@gt) ratio, rodlike macromoleculesaE 1), nematic concentratioiN
. Y . P ' =5.5, and normalized shear rate=P@ The primary director of the
employing the planar reflection transformatign,

Q-tensor projection off(m,t) is shown for each attracting mon-
odomain state, illustrating discrete mirror symmetry with respect to
the shearing plane. The equator corresponds to the shear plane; the
central dot represents the flow directiog and the edge dot repre-
Sents the flow gradient directiofy). These symmetric attractors,
reported in Ref[7], may be viewed as either “tilted kayaking or-
bits” or “out-of-plane wagging orbits.” The right figure shows the
attractor. The left figure shows the orbit that converges to this at-

. . . tractor from a pair of arbitrarily chosen out-of-plane initial data,
These two formulations of shear-induced mirror symme- P y P

try are now generalized to the Smoluchowski equatin ;il:g.ed only by Eq(31). The data is recorded from every 15th time
with imposed shear flou28).

Reflection symmetry in terms of the spherical harmonic . . . ) )
expansion of the orientational distribution functionBvery ~ Uré 2@ illustrates two mirror-symmetric orbits for a fixed
solutionf(m,t) of Eq. (1) has spherical harmonic amplitudes shear rate and nematic concentration; the equator in this fig-

a, (1), which generate another PDF solutit¥™(m, t) with ure is the shear plane and the north pole is the vorticity axis.
alrhmplitL,Jdes ’ The orbit in the northern hemisphere converges to a “tilted,

out-of-plane periodic” attractor, shown in Fig.(l8. Each
(—1)Ma (). (31)  orbit and attractor are mirrored by another numerical solu-
’ tion generated either by reflecting the initial data through the
Moreover, the orientational distributiorfsand ™ are  shearing plane and solving fgror applying the symmetry to
mirror symmetric with respect to the shearing plane, generthe entire northern hemisphere orbit. Here, the R¥-pro-
alizing the mesoscopic symmet(g9). jected onto the second-moment tensor, from which the major
In-plane configurations remain in-plane for all time/e  director is extracted at each time step.
define an in-plane subspace of orientational distribution Other consequences for the dynamics of monodomains
functions by the infinite set of conditions which generalizefollow. For example, if a tumbling or wagging in-plane orbit

V3-Q(t)-Vy, (29)

where the Cartesian representation of reflection through th
(x,y) plane is

V,=diag1,1,-1). (30)

the Q tensor in-plane condition®,,=Q,,=0, is the unique attractor, then out-of-plane orbits converge
symmetrically from both sides of the shearing plane; a simi-
a =0 for all m odd. (320  lar phenomenon occurs for convergence to steady in-plane

attractors. Likewise, many in-plane solutions are unstable to

The entire in-plane subspace is invariant under the flow obut-of-plane perturbations; their unstable manifolds are mir-
the Smoluchowski equatiofl). ror symmetric. We note that the PDF solutions identified

All in-plane orbitsf(m,t) are mapped to themself by this with the logrolling steady statevhose major director aligns
symmetry. Invariance of this subspace further implies in-with the vorticity axi3 and the classical Larson-Ottinger
plane orientational configurations cannot become out-ofkayaking orbit(whose major director rotates around the vor-
plane, nor can any out-of plane configurations become inticity axis) are mapped onto themselves by this symmetry
plane, in finite time. Out-of-plane orbits whose major therefore such monodomain attractors are isolated and do not
director does not align with the vorticity axis nor rotate aboutoccur in pairs.
the vorticity axis must remain tilted to one side of the shear- Another proof of the mirror-reflection symmetgl) is
ing plane. Explicit examples include branches of out-of-gained by fixing the coordinate representation of the PDF
plane steady and periodic states identified in R€f. which ~ the Smoluchowski equatiofl); afterwards we apply the re-
they explicitly show to occur in mirror-symmetric pairs. This flection transformation, for which the equation remains in-
symmetry explains their observations, but also impéiesry  variant. We write this result in terms of any finite-aspect-
orbit in the stable and unstable manifolds of every solutionyatio fluid with molecular geometry parametar a fixed
in-plane or out-of-plane, has a mirror-symmetric otbiig-  shear flowm(28), and a corresponding solutidrof the kinetic
ure 2 illustrates the reflection symmetry in simple shear. Figequation(1). We note that
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V5 Venear Vshean Vz.Q.V-'Z-:Q, V,- D-V;=D. From these data, construct the distribution function
(33  f_jq(m,t) by the spherical harmonic expansi(@t). Then,
f_|a is a solution of Eq(1) for fluids with aspect-ratio pa-

So, the time evolution ofi=V,-m obeys Eq.(2) and rameter—|a| and initial dataf (m,0) defined bya; ,(0).
P P To prove that this symmetry maps all solutions of ED.
R-(Mmxfy (m,t))=—-(nfy (m,t))=—-(hf(n,t)) for aspect ratior to solutions for aspect ratio 11/ it is a
2 Jam 2 an routine calculation to verify the following symmetry of the
=R, [nxnf(nt)]. (34) dynamical system for the amplitudes, given in the Ap-

pendix. Withi=+—1,
The flow-independent part follows from our proof of the e
orientational degeneracy in equilibrium. Thus, we have es- Fim=1"Fin, 1=24,., —Ismsl (39

tablished a transformation between solutions of the two . .
Smoluchowski equations defined by the triples for j=1,2,3 under th_e above transformat@ﬁ&).. We remark
that the corresponding result for mesoscopic tensor models

). (35)  [20] is far easier to discover and prove, from which this
symmetry was found.

If one iterates this transformation, then individual solu-
tions f(m,t) are mapped to themselves if they are in-plane,
but to their mirror symmetry through the shear plane if they
are out-of-plane.

We now establish a remarkable equivalence in the shear In Fig. 3 we illustrate this symmetry by plotting all solu-
response of nematic liquids with reciprocal aspect ratios tion branches, stable and unstable, of the Smoluchowski
and 1f. This result was previously established in Rg0]  equation(1) for all aspect-ratio parameteas=[ —1,+ 1], at
for tensor models, which we recall. Tig tensor(the sub- a particular fixed concentratidd and fixed shear rate Pe. We
script labels aspect ratig response to simple shear at fixed graph the projection of all solutiorisonto second-moment
nematic concentratioN for rods ¢ >1) generates the orien- Q-tensor components, as noted in the caption. Note that the
tational response at the same shear rate and concentration fgsgove symmetry implies, o, which is proportional to the
a discotic liquid of aspect ratio r./ Indeed they are related in-plane componen®,,, is an even function of; Re@; ),

(astheanf ), (a:VZ' Vshean fV2

C. Orientational equivalence between rodlike and discotic
nematic fluids in simple shear, for finite and infinite
aspect ratios

by the explicit transformation which is proportional to the in-plane quanti@,,—Qy, is
. an odd function ofa; the out-of-plane components Rgg)
Qr-1=V.-Q;-V., (36)  and Im@y, ), which are proportional t®,, andQ,,, respec-

) , i tively, are mapped onto one another by the symmetry, i.e.,
where V.. is a pure clockwise(—) counterclockwise(+) Qu{—2)=Q,,(a). These symmetries are evident in Fig. 3.
rotation by /2 rad. in the shearing plane that fixes the vor-gj periodic solutions are represented by a pointwise sta-

ticity axis, tistic (maximum value of the indicated component over one
0 1 0 period, the odd symmetry of Rag,) is not evident for the
periodic branches in Fig.(B).
V.=l -1 0 0], v_=VI. (37 There is another formulation of the rod-discotic symme-
0O 0 1 try. A one-to-one correspondence exists between the orienta-

tional distribution functionsf for two nematic liquids of
All mesoscopic orientational responses of rodlike and dis-aspect-ratio parameteesand —a. This transformation can
cotic liquids in simple shear are related by this 1:1 corre-be formulated in the following way. The Smoluchowski
spondence. We now extend this result to kinetic theory. Reequation(1) is uniquely specified by a triplea(v,f ), where
call the molecular geometry parameter in Ed), a=(r’>  ais the molecular geometry parameteis a linear flow, and
—1)/(r?+1), wherer is the molecular aspect ratio. Thus, f is the PDF for fixedN, Pe. Let
and 1f correspond ta and —a, which appears parametri-
cally in Eq. (1). n=V.-m. (40)

Rod-discotic correspondence in simple shekix any ] ) )

shear ratey and nematic concentratidy; rodlike (discotig ~ Ve note the following properties of the rotational transfor-
liquids are parametrized by positiy@egative-aspect-ratio Mations:
parametefal (—|al). Each solutionf|,(m,t) of the Smolu-
chowski equatior{1) for arbitrary initial dataf (m,t=0) has
the spherical harmonic expansi¢2l) with a unique set of
amplitude functionsaﬁm(t). Transform the initial data and

V. -QVIi=0Q, V..D-VI=-D. (41)

It then follows from Eq.(2) thatfor simple sheal28)

corresponding PDF solution as follows: n=Q-n—a[D-n—D:nnn], (42)
a[m(O)zimaffm(O), i=y-1, so the Jeffery molecular orbit equation foris recovered if
B N we replacea by —a, i.e., the Jeffery orbit is invariant under
ay () =i"ay (). (38 the transformationd,m)—(—a,n=V. -m). The result fol-
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FIG. 3. lllustration of the rod-discotic symmetry of monodomain orientational distributions for nematic liquids in simple shear. All stable
and unstable solution branches are depictedafef —1,1], equivalentlyr e[ —oo,+ ], for the Smoluchowski equatiofl) with fixed
nematic concentratioN= 6, and relatively strong normalized shear rate=Beb. Four spherical harmonic amplitude components are plotted,
which correspond to the projection of the orientational distribufi@mto the second-moment tensor, as seen from(EQ: the in-plane
components, o (proportional toQ,,) and Reg, ;) (proportional toQ,,—Qyy), and the out-of-plane components Ref (proportional to
Q2 and Im@, 1) (proportional toQ, ;). The solid thin line indicates a stable steady solution; the dashed thin line indicates an unstable steady
solution branch; the solid thick line indicates stable periodic solutions; the dashed thick line indicates unstable periodic solutions. For
periodic solutions, the maximum value of the indicated quantity is given, which breaks the perfect odd symmetaydfifRe{e top right
graph. The figures illustratex,, is an even function o&; Ref@,,) is an odd function of; and Reé,,) for a maps onto Ind,,) for —a.

lows from Eqgs.(15)—(17) and (34). Thus, we establish the product. This fact underlies symmetries of the systén
one-to-one correspondence between the Smoluchowski equahich we describe in terms of the triple defined above,
tions, and therefore between all solutions,
(a,v,f)—(1,(Q+aD)-x,f), (45
(a,Vsheanf ) —(—a,V- Vsheanfvi)- (43

As illustrated in Fig. 3, all phase transitiofisifurcations @v,f)=(=1(@=ab)-xf), (46)

versusN or Pe, all stable and unstable, steady or transient,

monodomain states occur simultaneously for rods and discot-

ics of reciprocal aspect ratios. We caution that the constitu- (ag,v.f )—>(az,
tive stress equaiton does not preserve this symmetry, since
Miesowicz viscosities and elasticity constants vary greatly
between rodlike and discotic nematic polymgts]. There- The first two symmetries imply aidentical monodomain
fore, this one-to-one correspondence is for the orientational€sponsé of: any finite aspect-ratio fluid with geometry pa-
homogeneous response to imposed shear. The rheological f@metera in any linear flow field and extremely thin rodlike

sponse and subsequent structure formation do not share tH#§ discotic fluids, respectively, in a linear superposition of
correspondence. the identical linear flow field perturbed by a pure-strain ve-

locity component. This correspondence has experimental im-
_ _ plications for monodomain behavior, as indicated in Ref.
D. One-to-one correspondence between different aspect-ratio [20]. For example, the monodomain response to the linear

fluids in related linear flows flow of an entire aspect-ratio spectrum of monodisperse

We again note that the Smoluchowski equatibndefines  nematic liquids can be inferred from flow experiments on a
a “triple”: (a,v,f(m,t)). Consider an arbitrarjinear flow single large-aspect-ratio nematic liquid by controlling the

Q+ —D|-x,f|. (47)
a

decomposed into symmetric and antisymmetric parts, amplitude of the straining component while holding the vor-
ticity component fixed. Alternatively, a finite-aspect-ratio,
v=(Q+D)-x. (44 monodisperse nematic liquid in simple shear can be used to

mimic more general linear flows of extremely thin rodlike or
We observe from Eq(1) that the rate-of-strain tens@r and  discotic fluids. The last symmetry shows that the orienta-
geometry parametea enter linearly and only through their tional distributions of any two distinct aspect-ratio liquids
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can be placed in one-to-one correspondence by varying thehere

strain component of the velocity while holding the vorticity N

component fixed. Fim=—Di(ma)l(l+1)a nu,
This symmetry provides physical intuition as to why mo-

lecular aspect-ratio variations could lead to significant ex-

perimental changes relative to thin rodlike fluids. In R20]

we find dramatic changes in flow phase diagrams when the

4w
Fim="5 N(—1)"D;(m.a)

molecular aspect ratio is reduced to the range of 5:1 to 3:1. 2
Steady-unsteady transitions, new types of monodomains, and sz_z n;_2 an,m-pazpd(l,m,n,p),
even a period-doubling transition to chaotic monodomain dy-
namics, result solely from aspect-ratio variations. Corre- 1 87 I+2
sponding sensitivity of kinetic flow phase diagrams to mo- |:3m—i — A\ /_(_1)“1# E a, md(l,m,n)
lecular aspect ratio will be discussed elsewhere. We 4 V15 n=l-2
emphasize that these properties sagtrictedto linear flows 142
and homogeneous orientational distributions, dadchotim- +a D a,meaga(l,mn)
ply such direct relationships for rheological behavior. n=T-2 '
1+2
IV. CONCLUSION +a §|) anm-20s(l ,m,n)]_
n=1-2

Several symmetries of the extended Doi kinetic theory for
finite- and infinite-aspect-ratio fluids in shear and related lin-All numbersqg appearing above are real constants arising in
ear flows are now established, extending results from Refpherical harmonic expansions,
[20] for mesoscopic, moment-averaged approximations of
the kinetic theory. These symmetries have been presented ind(l,m,n,p)=—3[¢| m1C2p4/N,M—p;j,p+1;l,—m—1)
abstract as well as in constructive form. A continuou8)O
family of orientational probability distribution$ for quies-
cent nematic liquids is characterized for every anisotropic +mp/n,m—p;j,p;l,—m),
initial orientational distribution. In simple shear, the PDF
for out-of-plane initial data generates an explicit mirror-  q,(I,m,n)=c;
symmetric solutionf>¥™ with respect to the shearing plane.

+C m2Cop2n,Mm—p;2p—1;I,—m+1)]

l,—m+1;n,m;2,—1)—c| pm4l,—m

This symmetry explains previously reported bistable, out-of- —=1;n,m;2,H+2m[ @ll ,—m;n,m;0,0)
plane, steady and periodic solutidid, and further implies a

mirror symmetry of all stable and unstable manifolds of in- - \/§|I,—m;m,k;2,0>],

plane and out-of-plane solution branches. Finally, orienta-

tional responses are shown to be in one-to-one correspon- ax(l,m,n)=c, m4l,—m—1;n,m+2;2,—1)
dence for rodlike and discotic nematic liquids in simple o

shear, and a similar correspondence is provided between +2m|l,—m;n,m+2;2,-2),
finite- and infinite-aspect-ratio nematic liquids in linear flows

related by a straining perturbation. All symmetries are illus- as(l,m,n)=—¢ moll,—m+1;n,m-2;2,1

trated with exact solutions or bifurcation diagrams, using
codes developed in the sequel to this pd2&, where ap-
plications of these symmetries are pursued.

+2m|l,—m;n,m—2;2,2),

where
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APPENDIX

The dynamical system for the amplitudgg (t)} in the f YRYPY'dm
spherical harmonic expansion §fEq. (21), results from a Imi=1
routine Galerkin proceduref., Refs.[2,4,6]) applied to the
Smoluchowski equatioil) and Jeffery orbit dynamicg2).
This system of ODEs can be represented in the form

(e.g., Ref[29]). By the parity property of the spherical har-
monics, anya, , with odd | is zero, and we only need to
retain coefficientsa, ,, with non-negativem. In simulations
that generate figures in the body, we assume con§armo
E(a )=F! +F2 +F3 make contact with Refd.7,8]; all symmetry properties are
de “bm/ T hm L m L me valid for variable or constant rotary diffusivity.

031712-8



SYMMETRIES OF THE DOI KINETIC THEORY F® . .. PHYSICAL REVIEW E 66, 031712 (2002

Reflection symmetry in simple shear those functiong| , with m even, we only need to check that

The dynamical systen48) provides an alternative form F{'m is an odd function of,; for odd m and F{"m is an even
of the discrete reflection symmetry bfin simple shear. To function ofa, for evenm. This is obviously true for the term
prove that these ODEs are invariant under the transformatiop!  because of the fact th,(m,a) is an even function of
any variablea, . For the second ternﬁﬁm contains the

am—~am =24 .Lna m odd, product of the form

qm—am 1=24,..Lha M even,
we split the variablega, ,}'s into two groups, one having Anm-pdzp-
odd second indern, another even second index The first )
group of variables forms a vectax, and the second group FOr oddm, one and only one ofn—p andp is odd. There-
of variables forms a vecta, . Then, the dynamical system fore the product is an odd functl_on of the first group of vari-
(48) for the spherical harmonic amplitudes can be repre@Plésa;. For even integem, the integersn—p andp must

sented in the form be both_ even or both od_d. So the produ_ct is an esyen function
of the first group of variables,;. The third termF} ., only
da; contains linear terms. Ifm is odd, then all of
- N(and), Qnm»@nm+2,8nm-2 have odd second index, $&f,, is an
odd function of the first group of variableg . On the other
da, B hand, ifmis even, then all 0&,, n,a, m+2,8, m—2 have even
dat Fa(ag,8). second index, séﬁm does not have any term relating to the

first group of variables;. Therefore, this third term is an
The mirror symmetry follows if we can show thkj is an  even function ofa; . These arguments establish the symme-
odd function ofa; andF, is an even function o, . SinceF;  try of solutions about the in-plane subspace formed by the
contains those functionB{ ,, with m odd andF, contains first group of variablesy , with the second group vanishing.
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