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Symmetries of the Doi kinetic theory for nematic polymers of arbitrary aspect ratio:
At rest and in linear flows

M. Gregory Forest and Ruhai Zhou
Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599

Qi Wang
Department of Mathematics, Florida State University, Tallahassee, Florida 32306

~Received 6 February 2002; published 30 September 2002!

The Doi theory has successfully modeled the monodomain shear flow problem for rigid, rodlike nematic
polymers. Numerical simulations of the Smoluchowski equation for the orientational probability distribution
function ~PDF! predict monodomain attractors in regions of nematic concentrationN and shear rateġ. Theo-
retical work has focused on approximate constructions of PDF solutions in linear flow regimes. Here we
develop a collection of simple observations, expressed by symmetries of the Smoluchowski equation, which
imply global properties that all PDF solutions must obey. The well-known orientational degeneracy of quies-
cent nematics is a continuous O~3! symmetry. In simple shear, a discrete reflection symmetry survives that is
evident in recent numerical simulations and implies bistability of out-of-plane attractors; and rodlike and
discotic nematic liquids of reciprocal aspect ratio respond identically up to a fixed rotation of the PDF. Finally,
we show the orientational effects due to varying molecular aspect ratio in any linear flow are equivalent to
varying the straining component of the flow field.

DOI: 10.1103/PhysRevE.66.031712 PACS number~s!: 61.30.Vx, 82.40.Ck, 02.70.Uu, 82.20.Wt
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I. INTRODUCTION

Numerical simulations, largely based on spherical h
monic expansion@1–10#, have been instrumental in esta
lishing agreement between experimental phenomena of n
atic polymers and the Doi kinetic theory@11–18# for flowing
polymeric liquid crystals. Most notably, monodomain attra
ing states and their transitions versus shear rate have
correlated with rheological features of sign changes in n
mal stress differences and structural changes in apparen
cosity and shear stress. These correlations with experim
rely first and foremost on accurate simulation of the Smo
chowski equation for the molecular orientational probabil
distribution function, and then on the identification of tho
solutions with monodomain steady or transient states.
example, the logrolling and kayaking solutions, whose ma
director, respectively, aligns with or oscillates around
vorticity axis in simple shear, were first exhibited with k
netic theory simulations in the early 1990s@2,4#. Attracting
out-of-plane states that either align or oscillatestrictly be-
tween the vorticity axis and shearing plane have only
cently been discovered@7,8#.

The final step in relating theory to experiment, once
phase diagram of attracting states is established, is to ev
ate constitutive laws for rheological properties along ea
stable solution branch.The brunt of the difficulty therefore
lies in the accurate computationof the full flow-phase dia-
gram of all individual monodomain attractors, their class
cation as steady or unsteady, stable or unstable, the multi
ity ~continuous or discrete! of solution branches, and the
transitions ~i.e., bifurcations! that may occur by varying
shear rate, or strength of the nematic potential~usually mod-
eled as a concentration parameter!, or other recent mode
1063-651X/2002/66~3!/031712~9!/$20.00 66 0317
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parameters included in the extended Doi kinetic theory s
as molecular aspect ratio~cf. Ref. @19#!.

Renewed interest in monodomain dynamics of rigid m
romolecular fluids is compelled by recent detailed kine
theory simulations of Faraoniet al. @7# and Grossoet al. @8#.
These studies reveal strikingkinetic theory phenomena, as
well as clarify previously reported results, in the mo
odomain response of rigid thin rods to simple shear:~1! A
discrete number of stable and unstable solution branches
each fixed shear rate;~2! various bifurcations among thes
branches, including a period-doubling route to chaotic d
namics in a window of intermediate shear rates for a narr
range of nematic concentration; and~3! a reflection symme-
try of out-of-plane states~both steady and periodic! which
leads, among other properties, to parameter regimes
bistable orientational response.

From the theory of dynamical systems, one knows t
global features, i.e., properties of the entire phase space
solutions, are often associated with symmetries. In Ref.@20#
the authors developed a collection of symmetries shared
several mesoscopic tensor models, i.e., properties those
apparently robust to closure approximation. These obse
tions are generalized now to the kinetic theory.

II. THE EXTENDED DOI KINETIC THEORY

We first recall the kinetic theory for homogeneous ne
atic liquids relevant for our purposes@19#. Let f (m,t) be the
probability distribution function~PDF! corresponding to the
probability that the axis of revolution of the molecule is pa
allel to directionm (imi51) at timet, where the lcp mol-
ecule is modeled as an axisymmetric ellipsoid of aspect r
r ~length of the molecule symmetry axis divided by the r
©2002 The American Physical Society12-1
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dius of the transverse circular cross section!. The fluid veloc-
ity is denoted byv. The Smoluchowski~kinetic! equation for
f (m,t) is given by~e.g.,@12,21,19#!

] f

]t
5Dr~a!R•F SRf 1

1

kT
fRVMSD G2R•@m3ṁf #,

~1!

where ]/]x5“ andR5m3]/]m are the spatial and th
rotational gradient operator, respectively,

ṁ5V•m1a@D•m2D:mmm# ~2!

is the Jeffery orbit of axisymmetric ellipsoidal molecul
@22#, D and V are the rate of strain and vorticity tensor
respectively, defined by

D5 1
2 ~“v1“vT!, V5 1

2 ~“v2“vT!, ~3!

21<a<1 is the molecular shape parameter related to
aspect ratior by

a5
r 221

r 211
. ~4!

The coefficientDr is an averaged rotary diffusivity, taken t
be constant to make contact with@7,8#; an orientation-
dependent rotary diffusivity will not change the symme
properties developed below, but will affect the phase d
gram in the simple flows discussed herein;k is the Boltz-
mann constant,T is the absolute temperature, andVMS is the
Maier-Saupe intermolecular potential with strength prop
tional to thedimensionless polymer concentration N,

VMS52
3NkT

2
^mm&:mm. ~5!

Here

^~• !&5E
imi51

~• ! f ~m,t !dm. ~6!

The average, or mesoscopic, molecular orientation is tr
tionally defined in terms of the second moment off, M , or its
traceless equivalentQ, themesoscopic orientation tensor,

M5^mm&, Q5M2
I

3
. ~7!

These equations, coupled with momentum, mass, and
ergy balance equations, constitute the extended Doi the
for finite-aspect-ratio nematic fluids. Forisothermal, linear
flow fields, these conservation laws are satisfied identica
and the full system ‘‘simplifies’’ to the homogeneous kine
equation~1!.
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III. A COLLECTION OF OBSERVATIONS

A. Orientational degeneracy in hydrodynamic equilibrium

Without flow, the kinetic equation~1! reduces to

] f

]t
5Dr~a!R•F SRf 1

1

kT
fRVMSD G . ~8!

Let UPO(3) denotes any orthogonal transformation act
on the configuration space~the sphereS2) of m ~see Ref.
@23#!. We now state the basic fact that is inherent in t
seminal works of Onsager@24#, Landau@25#, de Gennes and
Prost@26#, Hess@27#, and Doi@11#.

Orientational degeneracy of quiescent nematic liquid.
Every anisotropic solution of Eq.~8! generates a continuou
family of solutions parametrized by the group O~3! of or-
thogonal transformations. That is, every anisotropic solut
f (m,t) of Eq. ~8!, for arbitrary initial data f (m,t50)
Þ1/4p, generates an entire O~3! group of solutions,
f (U•m,t), where UPO(3). The isotropic equilibrium f
[1/4p is isolated, i.e., a fixed point of the symmetry.

We give a proof to illustrate the generality of potentia
for which it holds. First, rewrite Eq.~8! into the form

] f

]t
5Dr~a!R•SRf 1

1

kT
fRVMSD

5Dr~a!
]

]m
•F ]

]m
f 1

1

kT
f

]

]m
VMSG . ~9!

Consider a general class of intermolecular potentialsV,

V„m, f ~•,t !…5E
im8i51

h~m,m8! f ~m8,t !dm8, ~10!

whereh(m,m8) is a geometric expression for the exclud
volume that must~on physical grounds! satisfy a basic dual-
ity relation,

h~m,UT
•m8!5h~U•m,m8!. ~11!

This class of potentials, and the symmetry property, inclu
Maier-Saupe and Onsager potentials as special cases,

hMS52 3
2 NkT~m•m8!2,

hO5bNkTim3m8i , ~12!

whereN is a strength parameter associated with a dimens
less molecular concentration, andb is a parameter propor
tional to the volume of the molecule. The symmetry~11!
states that the excluded-volume potential cannot give the
ference if one rotatesm relative tom8 or vice versa. This
property applies to any aspect-ratio molecular fluid for wh
a distinguished molecule axis is specified.

For any orthogonal transformationU, an explicit calcula-
tion shows that

]

]m
f ~U•m,t !5UT

•

]

]n
f ~n,t !, ~13!
2-2
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where

n5U•m. ~14!

It then follows that

]

]m
•

]

]m
f ~U•m,t !5

]

]n
•

]

]n
f ~n,t !. ~15!

With f U(m,t)5 f (U•m,t), the intermolecular potential ha
the property

V„m, f U~•,t !…5E
im8i51

h~m,m8! f ~U•m8,t !dm8

5E
in8i51

h~m,UT
•n8! f ~n8,t !dn8

5E
in8i51

h~U•m,n8! f ~n8,t !dn8

5V„n, f ~•,t !…. ~16!

It follows that

]

]m
•

]

]m
V„m, f U~•,t !…5

]

]n
•

]

]n
V~n, f ~•,t !…,

]

]m
f ~U•m8,t !•

]

]m
V„U•m, f U~•,t !…

5
]

]n
f ~n,t !•

]

]n
V„n, f ~•,t !…. ~17!

Combining Eqs.~15!, ~16!, and~17!, we have

]

]t
f U~m,t !5Dr~a!R•FRf U1

1

kT
f URV„m, f U~•,t !…G

5Dr~a!
]

]m
•F ]

]m
f U1

1

kT
f U

]

]m
V„m, f U~•,t !…G ,

~18!

or equivalently,

]

]t
f ~n,t !5Dr~a!

]

]n
•F ]

]n
f 1

1

kT
f

]

]n
V„n, f ~•,t !…G

5Dr~a!Rn•FRnf 1
1

kT
fRnV„n, f ~•,t !…G ,

~19!

whereRn5n3]/]n. Thus, if f (m,t) satisfies Eq.~8!, so
doesf U(m,t).

The set of equilibrium solutions of Eq.~8! versus nematic
concentrationN comprises the isotropic-to-nematic pha
transition diagram; refer to Refs.@7,28,8#. The two aniso-
tropic solution branches,f 1(m), f 2(m), which exist for
sufficiently largeN, each correspond to a continuous O~3!
group of equilibria, f 1(U•m), f 2(U•m), for UPO(3).
03171
This rotational symmetry is the fundamental mechanism t
Onsager@24#, Landau@25# and de Gennes and Prost@26# use
to deduce that theI -N transition has to be of first order@26#.

We emphasize these symmetries givea priori control of
the ‘‘most probable directions’’ of orientation of the quie
cent nematic equilibria,f 1 ~stable!, f 2 ~unstable!. The peak
direction of f 1,2 coincides with the ‘‘major director’’ de-
fined in terms of the second-momentQ-tensor projection of
f. That is, if two PDF f 1,2 are related by the symmetr
f 1(m)5 f 2(U•m), then their second-moment projection
Q1,2 automatically satisfyQ15UT

•Q2•U, which reproduces
the mesoscopic form of the symmetry@20#. In numerical
simulations at nematic concentrations past theI-N transition,
a random initial distributionf (m,t50) will converge nu-
merically to one element of the O~3! degenerate solutionf 1,
from which one can deduce the Euler angles of the ‘‘ma
director.’’ But the inverse problem, where one prescribes
Euler angles of the asymptotic equilibrium distribution, i.
where one prescribes the specific elementUPO(3), is only
solved with symmetries.

The construction proceeds as follows. We first borrow
result from the following section, Eq.~32!, which character-
izes ‘‘in-plane orientation’’ at the kinetic equation level o
the PDF f, and which preserves the ‘‘in-plane’’ definitio
based on theQ-tensor projection off. This symmetry allows
us to initialize randomin-plane, biaxial initial distributions
f ip(m,0); by the group symmetry, every such orbit is gua
anteed to remain in-plane, and therefore all such anisotro
initial data are in the stable manifold of an in-plane nema
equilibrium f ip

1(m). ~Prior to flow, there are infinitely many
invariant planes, but we select thex-y plane to be consisten
with subsequent developments in planar shear, where th
the unique invariant plane.! We first choose biaxial initial
data for Fig. 1 whose major director aligns with thez axis,
and therefore the distribution converges to the uniq
uniaxial in-plane distribution peaked along thez axis. We
emphasize the PDF must remain peaked along thez axis for
all time, by the symmetry. Figure 1 plots the projection o
this orbit onto the order parameters of theQ tensor~equiva-
lently M !; the directors are not shown, since they are pass
during the evolution. Next we rotate the initial data out-o
plane, f op(m,0)5 f ip(U•m,0) with the specific choice

U5S )

3

)

3

)

3

0
&

2
2
&

2

2
2A6

6

A6

6

A6

6

D . ~20!

The numerical integration of this data, by the symmetry, h
to agree at all times with theU transformation of the in-plane
PDF solution. Therefore, the orbit is guaranteeda priori to
converge to the distributionf 1(Um). This is confirmed nu-
merically, and offers a good benchmark on the code a
visualization routines. Sincef op and f ip haveQ tensor pro-
jections related byQop(t)5UT

•Qip(t)•U for all time, we are
2-3
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FIG. 1. Orientational symmetry of orbits in the stable manifold of the nematic equilibriumf 1. Fix the strengthN55 of the Maier-Saupe
potential which is above theI-N transition. Two orbitsf 1,2(m,t) of the Smoluchowski equation without flow~8! are numerically computed
the initial dataf 1(m,0) is in-plane, defined by Eq.~32! for thex-y plane, whereasf 2(m,0)5 f 1(U•m,0) is anout-of-plane rotationof f 1 for
U given in Eq.~20!. These orbits converge to equilibrium distributions, and orientational symmetry impliesf 2(m,t)5 f 1(U•m,t) for all
time, which we do not enforce but rather confirm by numerical integration. Each orbit is projected onto the second-moment tensorM1,2(t),
which according to orientational symmetry must be related by a similarity transformation byU, Eq. ~20!, M2(t)5UT

•M1(t)•U. Since
eigenvalues are invariant under orthogonal similarity transformations, we can illustrate the symmetry by showing that the eigen
each second-moment are identical during the entire evolution. The eigenvalues are ordered 1>d1>d2>d3>0. Indeed, the curves lie on to
of one another, and converge to theuniaxial distributions withd25d3 . Any otherUPO(3) results in the same curve, illustrating O~3!
degeneracy of every orbit of Eq.~8!, and likewise the nematic equilibriumf 1.
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guaranteed by the O~3! symmetry of Eq.~8! that the eigen-
vectors are initially transformed byU and do not vary in
time, whereas the eigenvalues~order parameters! of eachQ
tensor evolve identically for all time~Fig. 1!.

We now recall essential ingredients of Galerkin expa
sions for the Smoluchowski equation and the projection f
mula for the second-moment tensor. The spherical harm
expansion forf @2,4,7,8# is

f ~m,t !'(
l 50

L

(
m52 l

l

al ,m~ t !Yl
m~u,f!, ~21!

where Yl
m are complex spherical harmonic basis functio

@29#,

Yl
m5Pl

m~cosu!eimf, ~22!

wherePl
m are Legendre polynomials,u, f are spherical co-

ordinates withu being the polar angle andf being the lati-
tude angle, andL is the order of truncation in the Galerki
approximation.

In the Appendix, we give an explicit form~48! of the
dynamical system for the amplitudesal ,m(t) which results
from the above expansion forf in the Smoluchowski equa
tion with and without an imposed linear flow field. The
equations are not new; this form is used to prove the flo
nematic kinetic symmetries.

The three amplitudesa2,0,a2,1,a2,2 uniquely specify the
second-moment tensorQ,

Qxx52
2

3
Ap

5
a2,01A8p

15
Re~a2,2!, ~23!
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Qyy52
2

3
Ap

5
a2,02A8p

15
Re~a2,2!, ~24!

Qxy52A8p

15
Im~a2,2!, ~25!

Qxx52A8p

15
Re~a2,1!, ~26!

Qyz5A8p

15
Im~a2,1!, ~27!

where, Re(•) and Im(•) represent the real and the imagina
part, respectively.

The amplitudesal ,m(t) of f are equivalent to the moment
of the distributionf ; one way to recover a continuous~with-
out flow! or discrete~with flow! symmetry from the momen
equations is through a transformation on the space of s
tions which maps orbits of the dynamical systemal ,m(t)
onto new orbits. All discrete flow symmetries are describ
below in this way.

B. Mirror symmetry of all out-of-plane responses
to simple shear

In this section we specialize the linear velocity field in E
~1! to simple shear with arbitrary shear rateġ, represented in
standard Cartesian coordinates,

v5ġ~y,0,0!. ~28!
2-4
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In Ref. @20#, we prove that the preclosure form of th
mesoscopic Doi theory admits a reflection symmetry: a
orbit Q(t) of the mesoscopic theory generates another o
symmetric about the shearing plane. A constructive al
rithm is given: retain the same values of in-plane com
nents,Qxx ,Qxy ,Qyy ,Qzz, and reverse the sign of both ou
of-plane components,Qxz ,Qyz . Any out-of-plane solution
will generate a solution that is distinct pointwise in time;
the entire orbit is not symmetric with respect to the vortic
axis, then the solutions are distinct. Logrolling and class
kayaking orbits that rotate around the vorticity axis a
mapped to themselves, and therefore are unique. This
crete reflection symmetry is compactly represented in te
of a similarity transformation of the mesoscopic tensorQ(t),
employing the planar reflection transformationV2 ,

V2
T
•Q~ t !•V2 , ~29!

where the Cartesian representation of reflection through
(x,y) plane is

V25diag~1,1,21!. ~30!

These two formulations of shear-induced mirror symm
try are now generalized to the Smoluchowski equation~1!
with imposed shear flow~28!.

Reflection symmetry in terms of the spherical harmo
expansion of the orientational distribution function f. Every
solution f (m,t) of Eq. ~1! has spherical harmonic amplitude
al ,m(t), which generate another PDF solutionf sym(m,t) with
amplitudes

~21!mal ,m~ t !. ~31!

Moreover, the orientational distributionsf and f sym are
mirror symmetric with respect to the shearing plane, gen
alizing the mesoscopic symmetry~29!.

In-plane configurations remain in-plane for all time. We
define an in-plane subspace of orientational distribut
functions by the infinite set of conditions which generali
the Q tensor in-plane conditionsQxz5Qyz50,

al ,m50 for all m odd. ~32!

The entire in-plane subspace is invariant under the flow
the Smoluchowski equation~1!.

All in-plane orbitsf (m,t) are mapped to themself by th
symmetry. Invariance of this subspace further implies
plane orientational configurations cannot become out
plane, nor can any out-of plane configurations become
plane, in finite time. Out-of-plane orbits whose maj
director does not align with the vorticity axis nor rotate abo
the vorticity axis must remain tilted to one side of the she
ing plane. Explicit examples include branches of out-
plane steady and periodic states identified in Ref.@7#, which
they explicitly show to occur in mirror-symmetric pairs. Th
symmetry explains their observations, but also impliesevery
orbit in the stable and unstable manifolds of every soluti
in-plane or out-of-plane, has a mirror-symmetric orbit. Fig-
ure 2 illustrates the reflection symmetry in simple shear. F
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ure 2~a! illustrates two mirror-symmetric orbits for a fixe
shear rate and nematic concentration; the equator in this
ure is the shear plane and the north pole is the vorticity a
The orbit in the northern hemisphere converges to a ‘‘tilte
out-of-plane periodic’’ attractor, shown in Fig. 2~b!. Each
orbit and attractor are mirrored by another numerical so
tion generated either by reflecting the initial data through
shearing plane and solving forf, or applying the symmetry to
the entire northern hemisphere orbit. Here, the PDFf is pro-
jected onto the second-moment tensor, from which the m
director is extracted at each time step.

Other consequences for the dynamics of monodoma
follow. For example, if a tumbling or wagging in-plane orb
is the unique attractor, then out-of-plane orbits conve
symmetrically from both sides of the shearing plane; a si
lar phenomenon occurs for convergence to steady in-p
attractors. Likewise, many in-plane solutions are unstable
out-of-plane perturbations; their unstable manifolds are m
ror symmetric. We note that the PDF solutions identifi
with the logrolling steady state~whose major director aligns
with the vorticity axis! and the classical Larson-Ottinge
kayaking orbit~whose major director rotates around the vo
ticity axis! are mapped onto themselves by this symme;
therefore such monodomain attractors are isolated and do
occur in pairs.

Another proof of the mirror-reflection symmetry~31! is
gained by fixing the coordinate representation of the PDFf in
the Smoluchowski equation~1!; afterwards we apply the re
flection transformation, for which the equation remains
variant. We write this result in terms of any finite-aspe
ratio fluid with molecular geometry parametera, a fixed
shear flow~28!, and a corresponding solutionf of the kinetic
equation~1!. We note that

FIG. 2. Reflection-symmetric, out-of-plane, periodic solutio
of the shear-driven Smoluchowski equation~1! for infinite-aspect-
ratio, rodlike macromolecules (a51), nematic concentrationN
55.5, and normalized shear rate Pe56. The primary director of the
Q-tensor projection off (m,t) is shown for each attracting mon
odomain state, illustrating discrete mirror symmetry with respec
the shearing plane. The equator corresponds to the shear plan
central dot represents the flow direction~x! and the edge dot repre
sents the flow gradient direction~y!. These symmetric attractors
reported in Ref.@7#, may be viewed as either ‘‘tilted kayaking or
bits’’ or ‘‘out-of-plane wagging orbits.’’ The right figure shows th
attractor. The left figure shows the orbit that converges to this
tractor from a pair of arbitrarily chosen out-of-plane initial dat
related only by Eq.~31!. The data is recorded from every 15th tim
step.
2-5
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V2•vshear5vshear, V2•V•V2
T5V, V2•D•V2

T5D.
~33!

So, the time evolution ofn5V2•m obeys Eq.~2! and

R•„m3ṁf V2
~m,t !…5

]

]m
•„ṁf V2

~m,t !…5
]

]n
•„ṅf ~n,t !…

5Rn•@n3ṅf ~n,t !#. ~34!

The flow-independent part follows from our proof of th
orientational degeneracy in equilibrium. Thus, we have
tablished a transformation between solutions of the t
Smoluchowski equations defined by the triples

~a,vshear, f !, ~a,V2•vshear, f V2
!. ~35!

C. Orientational equivalence between rodlike and discotic
nematic fluids in simple shear, for finite and infinite

aspect ratios

We now establish a remarkable equivalence in the sh
response of nematic liquids with reciprocal aspect ratior
and 1/r . This result was previously established in Ref.@20#
for tensor models, which we recall. TheQr tensor~the sub-
script labels aspect ratior! response to simple shear at fixe
nematic concentrationN for rods (r .1) generates the orien
tational response at the same shear rate and concentratio
a discotic liquid of aspect ratio 1/r . Indeed they are relate
by the explicit transformation

Qr 215V6
T
•Qr•V6 , ~36!

where V6 is a pure clockwise~2! counterclockwise~1!
rotation byp/2 rad. in the shearing plane that fixes the v
ticity axis,

V15S 0 1 0

21 0 0

0 0 1
D , V25V1

T . ~37!

All mesoscopic orientational responses of rodlike and d
cotic liquids in simple shear are related by this 1:1 cor
spondence. We now extend this result to kinetic theory.
call the molecular geometry parameter in Eq.~1!, a5(r 2

21)/(r 211), wherer is the molecular aspect ratio. Thus,r
and 1/r correspond toa and 2a, which appears parametr
cally in Eq. ~1!.

Rod-discotic correspondence in simple shear. Fix any
shear rateġ and nematic concentrationN; rodlike ~discotic!
liquids are parametrized by positive~negative!-aspect-ratio
parameteruau (2uau). Each solutionf uau(m,t) of the Smolu-
chowski equation~1! for arbitrary initial dataf (m,t50) has
the spherical harmonic expansion~21! with a unique set of
amplitude functionsal ,m

1 (t). Transform the initial data and
corresponding PDF solution as follows:

al ,m
2 ~0!5 i mal ,m

1 ~0!, i 5A21,

al ,m
2 ~ t !5 i mal ,m

1 ~ t !. ~38!
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From these data, construct the distribution functi
f 2uau(m,t) by the spherical harmonic expansion~21!. Then,
f 2uau is a solution of Eq.~1! for fluids with aspect-ratio pa-
rameter2uau and initial dataf (m,0) defined byal ,m

2 (0).
To prove that this symmetry maps all solutions of Eq.~1!

for aspect ratior to solutions for aspect ratio 1/r , it is a
routine calculation to verify the following symmetry of th
dynamical system for the amplitudesal ,m given in the Ap-
pendix. With i 5A21,

Fl ,m
j 5 i mFl ,m

j , l 52,4,..., 2 l<m< l ~39!

for j 51,2,3 under the above transformation~38!. We remark
that the corresponding result for mesoscopic tensor mo
@20# is far easier to discover and prove, from which th
symmetry was found.

If one iterates this transformation, then individual sol
tions f (m,t) are mapped to themselves if they are in-plan
but to their mirror symmetry through the shear plane if th
are out-of-plane.

In Fig. 3 we illustrate this symmetry by plotting all solu
tion branches, stable and unstable, of the Smoluchow
equation~1! for all aspect-ratio parametersaP@21,11#, at
a particular fixed concentrationN and fixed shear rate Pe. W
graph the projection of all solutionsf onto second-momen
Q-tensor components, as noted in the caption. Note that
above symmetry impliesa2,0, which is proportional to the
in-plane componentQzz, is an even function ofa; Re(a2,2),
which is proportional to the in-plane quantityQxx2Qyy , is
an odd function ofa; the out-of-plane components Re(a2,1)
and Im(a2,1), which are proportional toQxz andQyz , respec-
tively, are mapped onto one another by the symmetry,
Qxz(2a)5Qyz(a). These symmetries are evident in Fig.
Since periodic solutions are represented by a pointwise
tistic ~maximum value of the indicated component over o
period!, the odd symmetry of Re(a22) is not evident for the
periodic branches in Fig. 3~b!.

There is another formulation of the rod-discotic symm
try. A one-to-one correspondence exists between the orie
tional distribution functionsf for two nematic liquids of
aspect-ratio parametersa and 2a. This transformation can
be formulated in the following way. The Smoluchows
equation~1! is uniquely specified by a triple (a,v, f ), where
a is the molecular geometry parameter,v is a linear flow, and
f is the PDF for fixedN, Pe. Let

n5V6•m. ~40!

We note the following properties of the rotational transfo
mations:

V6•V•V6
T 5V, V6•D•V6

T 52D. ~41!

It then follows from Eq.~2! that for simple shear~28!

ṅ5V•n2a@D•n2D:nnn#, ~42!

so the Jeffery molecular orbit equation forn is recovered if
we replacea by 2a, i.e., the Jeffery orbit is invariant unde
the transformation (a,m)→(2a,n5V6•m). The result fol-
2-6
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FIG. 3. Illustration of the rod-discotic symmetry of monodomain orientational distributions for nematic liquids in simple shear. All
and unstable solution branches are depicted foraP@21,1#, equivalentlyr P@2`,1`#, for the Smoluchowski equation~1! with fixed
nematic concentrationN56, and relatively strong normalized shear rate Pe58.5. Four spherical harmonic amplitude components are plot
which correspond to the projection of the orientational distributionf onto the second-moment tensor, as seen from Eq.~27!: the in-plane
componentsa2,0 ~proportional toQzz) and Re(a2,2) ~proportional toQxx2Qyy), and the out-of-plane components Re(a2,1) ~proportional to
Qxz) and Im(a2,1) ~proportional toQyz). The solid thin line indicates a stable steady solution; the dashed thin line indicates an unstable
solution branch; the solid thick line indicates stable periodic solutions; the dashed thick line indicates unstable periodic soluti
periodic solutions, the maximum value of the indicated quantity is given, which breaks the perfect odd symmetry of Re(a22) in the top right
graph. The figures illustrate:a20 is an even function ofa; Re(a22) is an odd function ofa; and Re(a21) for a maps onto Im(a21) for 2a.
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lows from Eqs.~15!–~17! and ~34!. Thus, we establish the
one-to-one correspondence between the Smoluchowski e
tions, and therefore between all solutions,

~a,vshear, f !→~2a,V6•vshear, f V6
!. ~43!

As illustrated in Fig. 3, all phase transitions~bifurcations
versusN or Pe!, all stable and unstable, steady or transie
monodomain states occur simultaneously for rods and dis
ics of reciprocal aspect ratios. We caution that the const
tive stress equaiton does not preserve this symmetry, s
Miesowicz viscosities and elasticity constants vary grea
between rodlike and discotic nematic polymers@19#. There-
fore, this one-to-one correspondence is for the orientatio
homogeneous response to imposed shear. The rheologic
sponse and subsequent structure formation do not share
correspondence.

D. One-to-one correspondence between different aspect-ratio
fluids in related linear flows

We again note that the Smoluchowski equation~1! defines
a ‘‘triple’’: „a,v, f (m,t)…. Consider an arbitrarylinear flow
decomposed into symmetric and antisymmetric parts,

v5~V1D!•x. ~44!

We observe from Eq.~1! that the rate-of-strain tensorD and
geometry parametera enter linearly and only through the
03171
ua-

t,
t-
-

ce
y

l,
re-
his

product. This fact underlies symmetries of the system~1!
which we describe in terms of the triple defined above,

~a,v, f !→„1,~V1aD!•x, f …, ~45!

~a,v, f !→~21,~V2aD!•x, f !, ~46!

~a1 ,v, f !→Xa2 ,S V1
a1

a2
DD •x, f C. ~47!

The first two symmetries imply anidentical monodomain
responsef of: any finite aspect-ratio fluid with geometry pa
rametera in any linear flow field,andextremely thin rodlike
or discotic fluids, respectively, in a linear superposition
the identical linear flow field perturbed by a pure-strain v
locity component. This correspondence has experimental
plications for monodomain behavior, as indicated in R
@20#. For example, the monodomain response to the lin
flow of an entire aspect-ratio spectrum of monodispe
nematic liquids can be inferred from flow experiments on
single large-aspect-ratio nematic liquid by controlling t
amplitude of the straining component while holding the vo
ticity component fixed. Alternatively, a finite-aspect-rati
monodisperse nematic liquid in simple shear can be use
mimic more general linear flows of extremely thin rodlike
discotic fluids. The last symmetry shows that the orien
tional distributions of any two distinct aspect-ratio liquid
2-7
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can be placed in one-to-one correspondence by varying
strain component of the velocity while holding the vortici
component fixed.

This symmetry provides physical intuition as to why m
lecular aspect-ratio variations could lead to significant
perimental changes relative to thin rodlike fluids. In Ref.@20#
we find dramatic changes in flow phase diagrams when
molecular aspect ratio is reduced to the range of 5:1 to
Steady-unsteady transitions, new types of monodomains,
even a period-doubling transition to chaotic monodomain
namics, result solely from aspect-ratio variations. Cor
sponding sensitivity of kinetic flow phase diagrams to m
lecular aspect ratio will be discussed elsewhere.
emphasize that these properties arerestrictedto linear flows
and homogeneous orientational distributions, anddo not im-
ply such direct relationships for rheological behavior.

IV. CONCLUSION

Several symmetries of the extended Doi kinetic theory
finite- and infinite-aspect-ratio fluids in shear and related
ear flows are now established, extending results from R
@20# for mesoscopic, moment-averaged approximations
the kinetic theory. These symmetries have been presente
abstract as well as in constructive form. A continuous O~3!
family of orientational probability distributionsf for quies-
cent nematic liquids is characterized for every anisotro
initial orientational distribution. In simple shear, the PDFf
for out-of-plane initial data generates an explicit mirro
symmetric solutionf sym with respect to the shearing plan
This symmetry explains previously reported bistable, out-
plane, steady and periodic solutions@7#, and further implies a
mirror symmetry of all stable and unstable manifolds of
plane and out-of-plane solution branches. Finally, orien
tional responses are shown to be in one-to-one corres
dence for rodlike and discotic nematic liquids in simp
shear, and a similar correspondence is provided betw
finite- and infinite-aspect-ratio nematic liquids in linear flow
related by a straining perturbation. All symmetries are illu
trated with exact solutions or bifurcation diagrams, us
codes developed in the sequel to this paper@28#, where ap-
plications of these symmetries are pursued.
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APPENDIX

The dynamical system for the amplitudes$al ,m(t)% in the
spherical harmonic expansion off, Eq. ~21!, results from a
routine Galerkin procedure~cf., Refs.@2,4,6#! applied to the
Smoluchowski equation~1! and Jeffery orbit dynamics~2!.
This system of ODEs can be represented in the form

d

dt
~al ,m!5Fl ,m

1 1Fl ,m
2 1Fl ,m

3 ,
03171
he

-

e
1.
nd
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-
-
e

r
-
f.
f
in

c
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n-

en

-
g

y
0-

where

Fl ,m
1 52Dr~m,a!l ~ l 11!al ,m ,

Fl ,m
2 5

4p

5
N~21!mDr~m,a!

3 (
p522

2

(
n5 l 22

l 12

an,m2pa2,pq~ l ,m,n,p!,

Fl ,m
3 5 i

1

4
A8p

15
~21!mmH (

n5 l 22

l 12

an,mq1~ l ,m,n!

1a (
n5 l 22

l 12

an,m12q2~ l ,m,n!

1a (
n5 l 22

l 12

an,m22q3~ l ,m,n!J .

All numbersq appearing above are real constants arising
spherical harmonic expansions,

q~ l ,m,n,p!52 1
2 @cl ,m,1c2,p,1un,m2p; j ,p11;l ,2m21&

1cl ,m,2c2,p,2un,m2p;2,p21;l ,2m11&]

1mpun,m2p; j ,p; l ,2m&,

q1~ l ,m,n!5cl ,m,2u l ,2m11;n,m;2,21&2cl ,m,1u l ,2m

21;n,m;2,1&12m@A10
3 u l ,2m;n,m;0,0&

2A 2
3 u l ,2m;m,k;2,0&],

q2~ l ,m,n!5cl ,m,1u l ,2m21;n,m12;2,21&

12mu l ,2m;n,m12;2,22&,

q3~ l ,m,n!52cl ,m,2u l ,2m11;n,m22;2,1&

12mu l ,2m;n,m22;2,2&,

where

cl ,m,15A~ l 2m!~ l 1m11!,

cl ,m,25A~ l 1m!~ l 2m11!,

the symbolun,k; j ,p; l ,m& denotes the integral of the produ
of three spherical harmonics,

E
imi51

Yn
kYj

pYl
mdm

~e.g., Ref.@29#!. By the parity property of the spherical ha
monics, anyal ,m with odd l is zero, and we only need to
retain coefficientsal ,m with non-negativem. In simulations
that generate figures in the body, we assume constantDr to
make contact with Refs.@7,8#; all symmetry properties are
valid for variable or constant rotary diffusivity.
2-8
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Reflection symmetry in simple shear

The dynamical system~48! provides an alternative form
of the discrete reflection symmetry off in simple shear. To
prove that these ODEs are invariant under the transforma

al ,m→2al ,m , l 52,4,...,Lmax, m odd,

al ,m→al ,m , l 52,4,...,Lmax, m even,

we split the variables$al ,m% ’s into two groups, one having
odd second indexm, another even second indexm. The first
group of variables forms a vectora1 , and the second grou
of variables forms a vectora2 . Then, the dynamical system
~48! for the spherical harmonic amplitudes can be rep
sented in the form

da1

dt
5F1~a1 ,a2!,

da2

dt
5F2~a1 ,a2!.

The mirror symmetry follows if we can show thatF1 is an
odd function ofa1 andF2 is an even function ofa1 . SinceF1

contains those functionsFl ,m
j with m odd andF2 contains
id

J

e

s
k,

03171
n

-

those functionsFl ,m
j with m even, we only need to check tha

Fl ,m
j is an odd function ofa1 for odd m andFl ,m

j is an even
function ofa1 for evenm. This is obviously true for the term
Fl ,m

1 , because of the fact thatDr(m,a) is an even function of
any variableal ,m . For the second term,Fl ,m

2 contains the
product of the form

an,m2pa2,p .

For oddm, one and only one ofm2p andp is odd. There-
fore the product is an odd function of the first group of va
ablesa1 . For even integerm, the integersm2p andp must
be both even or both odd. So the product is an even func
of the first group of variablesa1 . The third termFl ,m

3 only
contains linear terms. If m is odd, then all of
an,m ,an,m12 ,an,m22 have odd second index, soFl ,m

3 is an
odd function of the first group of variablesa1 . On the other
hand, ifm is even, then all ofan,m ,an,m12 ,an,m22 have even
second index, soFl ,m

3 does not have any term relating to th
first group of variablesa1 . Therefore, this third term is an
even function ofa1 . These arguments establish the symm
try of solutions about the in-plane subspace formed by
first group of variablesa1 , with the second group vanishing
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